Skip to main content
Contents Index
Dark Mode Prev Up Next Scratch ActiveCode Profile
\(\require{cancel}\newcommand\degree[0]{^{\circ}}
\newcommand\Ccancel[2][black]{\renewcommand\CancelColor{\color{#1}}\cancel{#2}}
\newcommand{\alert}[1]{\boldsymbol{\color{magenta}{#1}}}
\newcommand{\blert}[1]{\boldsymbol{\color{blue}{#1}}}
\newcommand{\bluetext}[1]{\color{blue}{#1}}
\delimitershortfall-1sp
\newcommand\abs[1]{\left|#1\right|}
\newcommand{\lt}{<}
\newcommand{\gt}{>}
\newcommand{\amp}{&}
\newcommand{\fillinmath}[1]{\mathchoice{\boxed{\displaystyle \phantom{\,#1\,}}}{\boxed{\textstyle \phantom{\,#1\,}}}{\boxed{\scriptstyle \phantom{\,#1\,}}}{\boxed{\scriptscriptstyle\phantom{\,#1\,}}}}
\)
Section A.4 Chapter 4 Applications of Quadratic Models
Subsection A.4.2 The Vertex
Subsubsection A.4.2.2 Product of binomials
With practice, you will be able to multiply binomials mentally.
Example A.4.14 .
Multiply
\(~(x-6)(x+3)\text{.}\)
Solution .
We apply the distributive law to multiply each term of the first factor by each term of the second factor. (The "FOIL" method.)
\begin{align*}
(x-6)(x+3) \amp = x \cdot x + 3 \cdot x - 6 \cdot x - 6 \cdot 3\\
\amp = x^2+3x-6x-18 \amp \amp \blert{\text{Combine like terms.}}\\
\amp = x^2-3x-18
\end{align*}
Example A.4.15 .
Expand
\(~(2t-5)^2\text{.}\)
Solution .
Multiply \(~(2t-5)(2t-5)\)
\begin{align*}
(2t-5)(2t-5) \amp = 4t^2-10t-10t+25 \amp \amp \blert{\text{Combine like terms.}}\\
\amp = 4t^2-20t+25
\end{align*}
Checkpoint A.4.16 .
Multiply
\(~(4a-7)(3a+8)\text{.}\)
Checkpoint A.4.17 .
Expand
\(~(3-4b)^2\text{.}\)
Subsubsection A.4.2.3 Solve for a parameter
We can find the equation for a parabola if we know, for example, the vertex and one other point.
Example A.4.18 .
The point
\((6,2)\) lies on the graph of
\(~y=a(x-4)^2+1.~\) Solve for
\(a\text{.}\)
Solution .
Substitute 6 for \(x\) and 2 for \(y\text{,}\) then solve for \(a\text{.}\)
\begin{align*}
\alert{2} \amp = a(\alert{6}-4)^2+1\\
2 \amp = a(4) + 1\\
1 \amp = 4a
\end{align*}
The solution is \(a = \dfrac{1}{4}\text{.}\)
Example A.4.19 .
The point
\((-2,11)\) lies on the graph of
\(~y=x^2+bx-3.~\) Solve for
\(b\text{.}\)
Solution .
Substitute -2 for \(x\) and 11 for \(y\text{,}\) then solve for \(b\text{.}\)
\begin{align*}
(\alert{-2})^2 +b(\alert{-2}) -3 \amp = 11\\
4-2b-3 \amp = 11\\
-2b \amp = 10
\end{align*}
The solution is \(b = -5\text{.}\)
Checkpoint A.4.20 .
The point
\((-6,10)\) lies on the graph of
\(~y=a(x+3)^2-2.~\) Solve for
\(a\text{.}\)
Checkpoint A.4.21 .
The point
\((-3,8)\) lies on the graph of
\(~y=-x^2+bx+5.~\) Solve for
\(b\text{.}\)
Checkpoint A.4.22 .
The point
\((8,-12)\) lies on the graph of
\(~y=ax^2-4x+36.~\) Solve for
\(a\text{.}\)
Checkpoint A.4.23 .
The point
\((60,-480)\) lies on the graph of
\(~y=\dfrac{-2}{3}(x-h)^2+120.~\) Solve for
\(h\text{.}\)
Subsection A.4.3 Curve Fitting
Subsubsection A.4.3.1 Points on a graph
If a curve passes through a given point, the coordinates of the point satisfy the equation of the curve.
Example A.4.24 .
Write an equation to say that
\((-3,8)\) lies on the graph of
\(~y=ax^2+bx+c~\text{.}\)
Solution .
Substitute \(-3\) for \(x\) and \(8\) for \(y\text{.}\)
\begin{align*}
8 \amp = a(-3)^2+b(-3)+c \amp \amp \blert{\text{Simplify.}}\\
8 \amp = 9a-3b+c
\end{align*}
Checkpoint A.4.25 .
Write an equation to say that
\((-4,-18)\) lies on the graph of
\(~y=ax^2+bx+c~\text{.}\)
Checkpoint A.4.26 .
Write an equation to say that
\((8,0)\) lies on the graph of
\(~y=ax^2+bx+c~\text{.}\)
Checkpoint A.4.27 .
Write an equation to say that
\((0,-5)\) lies on the graph of
\(~y=ax^2+bx+c~\text{.}\)
Checkpoint A.4.28 .
Write an equation to say that
\((-60,400)\) lies on the graph of
\(~y=ax^2+bx+c~\text{.}\)
Subsubsection A.4.3.2 Solve a 2x2 linear system
For fitting a parabola through given points, weβll solve systems using the method of elimination.
Example A.4.29 .
Solve the system by elimination.
\begin{align*}
5x-2y \amp = 22\\
2x-5y \amp = 13
\end{align*}
Solution .
To eliminate the \(x\) -terms,look for the smallest integer that both 2 and 5 divide into evenly, namely, 10. Multiply the first equation by 2 and the second equation by \(-5\text{.}\)
\begin{align*}
\blert{2}(5x-2y \amp = 22) \amp\amp \rightarrow \amp 10x-4y \amp = 44\\
\blert{-5}(2x-5y \amp = 13) \amp\amp \rightarrow \amp -10x+25y \amp = -65
\end{align*}
Add these new equations to obtain an equation in \(y\text{.}\)
\begin{align*}
10x-~4y \amp = 44\\
\underline{-10x+25y} \amp \underline{{}= -65 \vphantom{-10x+25y}}\\
21y \amp = -21
\end{align*}
Solve for \(y\) to find \(y=-1\text{.}\) Finally, substitute \(y=\alert{-1}\) into the first equation and solve for \(x\text{.}\)
\begin{align*}
5x-2(\alert{-1}) \amp = 22\\
5x+2 \amp = 22\\
x \amp = 4
\end{align*}
The solution to the system is \((4,-1)\text{.}\)
Checkpoint A.4.30 .
Solve the system by elimination.
\begin{align*}
2x-9y \amp = 3\\
4x-5y \amp = -7
\end{align*}
Checkpoint A.4.31 .
Solve the system by elimination.
\begin{align*}
5x+2y \amp = 5\\
4x+3y \amp = -3
\end{align*}
Subsubsection A.4.3.3 Special 3x3 linear system
In this special case of solving a 3x3 system, we can eliminate
\(c\) to create a 2x2 system.
Example A.4.32 .
Solve the system by elimination.
\begin{align*}
a+b+c \amp = 3 \amp \amp \text{(1)}\\
4a-2b+c \amp = 18 \amp \amp \text{(2)}\\
9a+3b+c \amp = 13 \amp \amp \text{(3)}
\end{align*}
Solution .
Eliminate \(c\) by subtracting (1) from (2), then eliminate \(c\) again by subtracting (1) from (3), to get a 2x2 system:
\begin{align*}
3a-3b \amp = 15 \\
8a+2b \amp = 10
\end{align*}
Divide the first equation by 3 and the second equation by 2, then add.
\begin{align*}
a-b \amp = 5 \\
\underline{4a+b} \amp \underline{{}= 5 \vphantom{4a+b}} \\
5a \amp = 10
\end{align*}
We see that \(a=2\text{.}\) Substituting \(a=2\) into the equation \(a-b=5\text{,}\) we find that \(b=-3\text{.}\) Finally, we substitue \(a=2\) and \(b=-3\) into equation (1) to find
\begin{align*}
2-3+c \amp = 3 \\
c \amp = 4
\end{align*}
The solution is \(a=2,~b=-3\text{,}\) and \(c=4\text{.}\)
Checkpoint A.4.33 .
Solve the system by elimination.
\begin{align*}
a+b+c \amp = 5\\
4a-2b+c \amp = -7\\
16a+4b+c \amp = -37
\end{align*}
Subsection A.4.4 Quadratic Inequalities
Subsubsection A.4.4.1 Solve a linear inequality
First, letβs review solving linear inqualities.
Example A.4.34 .
Solve
\(~-3x+1 \gt 7~\) and graph the solutions on a number line.
Solution .
\begin{align*}
-3x+1 \amp \gt 7 \amp \amp \blert{\text{Subtract 1 from both sides.}}\\
-3x \amp \gt 6 \amp \amp \blert{\text{Divide both sides by -3.}}\\
x \amp \lt -2 \amp \amp \blert{\text{Reverse the direction of the inequality.}}
\end{align*}
The graph of the solutions is shown below.
Example A.4.35 .
Solve
\(~-3 \lt 2x-5 \le 6~\) and graph the solutions on a number line.
Solution .
\begin{align*}
-3 \amp \lt 2x-5 \le 6 \amp \amp \blert{\text{Add 5 on all three sides.}}\\
2 \amp \lt 2x \le 11 \amp \amp \blert{\text{Divide each side by 2.}}\\
1 \amp \lt x \le \dfrac{11}{2} \amp \amp \blert{\text{Do not reverse the inequality.}}
\end{align*}
The graph of the solutions is shown below.
Checkpoint A.4.36 .
Solve the inequality
\(~8-4x \gt -2~\)
Checkpoint A.4.37 .
Solve the inequality
\(~-6 \le \dfrac{4-x}{3} \lt 2~\)
Checkpoint A.4.38 .
Solve the inequality
\(~3x-5 \lt -6x+7~\)
Checkpoint A.4.39 .
Solve the inequality
\(~-6 \gt 4-5b \gt -21~\)
Subsubsection A.4.4.2 \(x\) -intercepts of a parabola
To solve a quadratic inequality, we first find the
\(x\) -intercepts of the graph. Remember that there are four different methods for solving a quadratic equation.
Example A.4.40 .
Find the
\(x\) -intercepts of the parabola
\(~y=4x^2-12\)
Solution .
Set \(y=0\) and solve for \(x\text{.}\) Use extraction of roots.
\begin{align*}
4x^2-12 \amp = 0 \\
4x^2 \amp = 12 \\
x^2 \amp = 3 \\
x \amp = \pm \sqrt{3}
\end{align*}
The \(x\) -intercepts are \((\sqrt{3},0)\) and \((-\sqrt{3},0)\text{,}\) or about \((1.7,0)\) and \((-1.7,0)\text{.}\)
Example A.4.41 .
Find the
\(x\) -intercepts of the parabola
\(~y=-4x^2-12x\)
Solution .
Set \(y=0\) and solve for \(x\text{.}\) Factor the right side.
\begin{align*}
0 \amp = -4x^2-12x \\
0 \amp = -4x(x+3) \amp \amp \blert{\text{Set each factor equal to 0.}}\\
4x\amp = 0~~~~~~x+3 = 0 \\
x \amp = 0~~~~~~x=-3
\end{align*}
The \(x\) -intercepts are \((0,0)\) and \((-3,0)\text{.}\)
Example A.4.42 .
Find the
\(x\) -intercepts of the parabola
\(~y=4x^2-12x+8\)
Solution .
Set \(y=0\) and solve for \(x\text{.}\) Factor the right side.
\begin{align*}
0 \amp = 4x^2-12x+8 \\
0 \amp = 4(x^2-3x+2) \\
0 \amp = 4(x-2)(x-1) \amp \amp \blert{\text{Set each factor equal to 0.}}\\
x-2\amp = 0~~~~~~x-1 = 0 \\
x \amp = 2~~~~~~x=1
\end{align*}
The \(x\) -intercepts are \((2,0)\) and \((1,0)\text{.}\)
Example A.4.43 .
Find the
\(x\) -intercepts of the parabola
\(~y=12-12x-4x^2\)
Solution .
Set \(y=0\) and solve for \(x\text{.}\) Use the quadratic formula.
\begin{align*}
0 \amp = -4x^2-12x+12 \amp \amp \blert{a=-4,~b=-12,~c=12}\\
x \amp = \dfrac{12 \pm \sqrt{(-12)^2-4(-4)(12)}}{2(-4)}\\
\amp = \dfrac{12 \pm \sqrt{144+96}}{-8}\\
\amp = \dfrac{12 \pm \sqrt{240}}{-8} = \dfrac{12 \pm 4\sqrt{15}}{-8} \amp \amp \blert{\sqrt{240} = \sqrt{16 \cdot 15} = 4\sqrt{15}}\\
\amp =\dfrac{-3 \pm \sqrt{15}}{2}
\end{align*}
The \(x\) -intercepts are \(\left(\dfrac{-3 + \sqrt{15}}{2},0\right)\) and \(\left(\dfrac{-3 - \sqrt{15}}{2},0\right)\text{,}\) or about \((0.44,0)\) and \((-3.44,0)\text{.}\)
For each Exercise, find the
\(x\) -intercepts of the parabola.
Checkpoint A.4.44 .
Answer .
\(\left(\dfrac{1}{2},0\right),~(3,0)\)
Checkpoint A.4.45 .
Answer .
\((0,0)\text{,}\) \(\left(\dfrac{7}{2},0\right)\)
Checkpoint A.4.46 .
Checkpoint A.4.47 .
You have attempted
of
activities on this page.