Consider the system \({\mathbf x}' = A {\mathbf x}\text{,}\) where
\begin{equation*}
A
=
\begin{pmatrix}
7 \amp -1 \amp 2 \\
18 \amp -2 \amp 6 \\
-9 \amp 2 \amp -1
\end{pmatrix}\text{.}
\end{equation*}
The characteristic polynomial of \(A\) is
\begin{equation*}
\det(A - \lambda I) = \lambda^3 - 4\lambda^2 + 5 \lambda - 2 = (\lambda - 1)^2 (\lambda - 2).
\end{equation*}
The eigenvalue \(\lambda_1 = 1\) has eigenvector \(\mathbf v_1 = (2, 6, -3)\) and the eigenvalue \(\lambda_2 = 2\) has eigenvector \(\mathbf v_2 = (1, 3, -1)\text{.}\) Thus, we can find two linearly independent solutions in this case
\begin{equation*}
{\mathbf x}_1(t) = e^{t} \begin{pmatrix} 2 \\ 6 \\ -3 \end{pmatrix}
\qquad\text{and}\qquad
{\mathbf x}_2(t) = e^{2t} \begin{pmatrix} 1 \\ 3 \\ -1 \end{pmatrix}.
\end{equation*}
Since
\(\lambda_1 = 1\) has multiplicity two and we can find only one linearly independent eigenvector, it is not possible to apply
Proposition 3.9.8 in this case.
If we consider the exponential
\begin{align*}
e^{ t A} {\mathbf v} & = e^{\lambda_1 t} e^{t (A - \lambda_1 I)} {\mathbf v}\\
& = e^{\lambda_1 t} \left( {\mathbf v} + t (A - \lambda_1 I ){\mathbf v} + \frac{t^2}{2!} (A - \lambda_1 I )^2 {\mathbf v} + \frac{t^2}{3!} (A - \lambda_1 I )^3 {\mathbf v} + \cdots \right)
\end{align*}
where \(\mathbf v, \mathbf v_1\) and \(\mathbf v_2\) are linearly independent, our goal is to choose \({\mathbf v}\) for which the series truncates. That is, we must look for vectors \({\mathbf v}\) such that \((A - \lambda_1 I)^k {\mathbf v} = (A - I)^k{\mathbf v} = {\mathbf 0}\text{.}\) If \(k = 1\text{,}\) then \((A - \lambda_1 I) {\mathbf v} = (A - I){\mathbf v} = {\mathbf 0}\text{,}\) which means that \({\mathbf v}\) is an eigenvector. Thus, \({\mathbf v}\) must be a multiple of \(\mathbf v_1 = (2, 6, -3)\) in this case. Since we already know that the eigenspace associated with this eigenvector has dimension one and is generated by \(\mathbf v_1\text{,}\) we must consider higher powers.
Since
\begin{equation*}
(A - \lambda I) = (A - I) =
\begin{pmatrix}
6 \amp -1 \amp 2 \\
18 \amp -3 \amp 6 \\
-9 \amp 2 \amp -2
\end{pmatrix},
\end{equation*}
we have
\begin{equation*}
(A - \lambda I)^2 = (A - I)^2 =
\begin{pmatrix}
0 & 1 & 2 \\
0 & 3 & 6 \\
0 & -1 & -2
\end{pmatrix}.
\end{equation*}
The nullspace of this matrix has dimension two. Certainly, \(\mathbf v_1 = (2, 6, -3)\) is in the nullspace of \((A - I)^2\text{,}\) since it is the nullspace of \(A - I\text{.}\) We wish to find a vector that is not a multiple of the vector \(\mathbf v_1\) that is also in the nullspace of \((A - I)^2\text{.}\) The vector \(\mathbf v = (0, 2, -1)\) will do. Now our series truncates,
\begin{align*}
{\mathbf x}_3(t) & = e^{ t A} {\mathbf v}\\
& = e^{\lambda_1 t} e^{t (A - \lambda_1 I)} {\mathbf v}\\
& = e^{\lambda_1 t} \left( {\mathbf v} + t (A - \lambda_1 I ){\mathbf v} \right)\\
& = e^{\lambda_1 t} \left[ \begin{pmatrix} 0 \\ 2 \\ -1 \end{pmatrix} + t (A - I )\begin{pmatrix} 0 \\ 2 \\ -1 \end{pmatrix} \right]\\
& = e^{t} \begin{pmatrix} -4t \\ 2 - 12t \\ -1 + 6 t \end{pmatrix}
\end{align*}
We now have a general solution for our system,
\begin{equation*}
{\mathbf x}(t)
=
c_1
e^{t} \begin{pmatrix} 2 \\ 6 \\ -3 \end{pmatrix}
+
c_2
e^{2t} \begin{pmatrix} 1 \\ 3 \\ -1 \end{pmatrix}
+
c_3
e^{t} \begin{pmatrix} -4t \\ 2 - 12t \\ -1 + 6 t \end{pmatrix}.
\end{equation*}