Skip to main content

Appendix C Notation

The following table defines the notation used in this book. Page numbers or references refer to the first appearance of each symbol.
Symbol Description Location
\(x'(t) = f(t, x), x(0) = x_0\) first-order initial value problem Subsection 1.1.1
\(\dfrac{dP}{dt} = k \left( 1 - \dfrac{P}{N} \right) P\) logistic population model Subsection 1.1.2
\(mx'' + bx' + kx = 0\) simple damped harmonic oscillator Subsection 1.1.3
\(\dfrac{dy}{dx} =M(x) N(y)\) separable differential equation Subsection 1.2.1
\(\dfrac{dx}{dt} + p(t) x = q(t)\) first-order linear differential equation Subsection 1.5.2
\(\dfrac{dx}{dt} = f_\lambda(x)\) one-parameter family Subsection 1.7.2
\({\mathbf x}(t)\) vector-valued function Subsection 2.2.2
\(\dfrac{d {\mathbf x}}{dt} = {\mathbf f}(t, {\mathbf x}), {\mathbf x}(t_0) = {\mathbf x}_0\) vector form of a system Subsection 2.3.2
\(\dfrac{dx}{dt} = f(x),\dfrac{dy}{dt} = g(x, y)\) partially coupled system Subsection 2.4.1
\(\dfrac{d \mathbf x}{dt} = A {\mathbf x}\) matrix notation for a system Section 3.1
\(A^{-1}\) inverse of a matrix \(A\) Subsection 3.1.1
\(\det(A)\) determinant of \(A\) Subsection 3.1.1
\(\mathbf x^T\) matrix transpose Subsection 3.1.2
\(\det(A - \lambda I) = \lambda^2 - (a + d) \lambda + (ad - bc)\) characteristic polynomial Subsection 3.1.3
\(\trace(A)\) trace of \(A\) Exercises 3.1.6
\(I\) identity matrix Exercises 3.1.6
\(e^{i \beta t} = \cos \beta t + i \sin \beta t\) Euler’s formula Subsection 3.4.1
\({ \mathbf x}_{\text{Re}}\) real part of a complex number or vector Subsection 3.4.1
\({ \mathbf x}_{\text{Im}}\) imaginary part of a complex number or vector Subsection 3.4.1
\(\overline{\lambda}\) complex conjugate Subsection 3.4.3
\(e^A\) matrix exponential Subsection 3.9.1
\(e^A\) matrix exponential Subsection 3.9.1
\(a(t) x'' + b(t) x' + c(t) x = g(t)\) second-order linear differential equation Section 4.1
\(p(\lambda) = \det(A - \lambda I) = \lambda^2 + \frac{b}{a} \lambda + \frac{c}{a}\) characteristic polynomial Subsection 4.1.2
\(W[f, g](t)\) Wronskian Exercises 4.2.7
\(\omega_0\) natural frequency Subsection 4.4.1
\(\omega\) driving frequency Subsection 4.4.1
\(\overline{\omega}\) mean frequency Subsection 4.4.2
\(\delta\) half difference Subsection 4.4.2
\(H(\lambda)\) transfer function Subsection 4.4.3
\(G(\omega)\) gain Subsection 4.4.3
\(J\) Jacobian matrix Subsection 5.1.1
\(H\) Hamiltonian function Subsection 5.2.2
\({\mathcal L}(f)(s)\) Laplace transform Subsection 6.1.1
\(u_a(t) = u(t - a)\) Heaviside function Example 6.1.5
\({\mathcal L}^{-1}(F(s))(t)\) inverse Laplace transform Subsection 6.1.3
\(\Gamma(x)\) gamma function Exercises 6.1.7
\(\delta\) Dirac delta function Subsection 6.3.1
\(f*g\) convolution product Subsection 6.4.1