Skip to main content
Logo image

Section B.2 Integration by parts

Integration by parts may be a good choice when the integrand contains a product. Recall the formula for integration by parts.
\begin{equation} \int u \cdot dv = u\cdot v - \int v \cdot du \tag{B.4} \end{equation}
Let’s consider the following example.

Example 59. Evaluate \(\ds \int t^3 \ln t \ dt \).

We choose \(u\) and \(dv\) as follows:
\begin{equation*} u = \ln t \hspace{2cm} dv = t^3 \ dt. \end{equation*}
Then we find \(du\) by taking the derivative of \(u\) and \(v\) by taking the antiderivative of \(dv\text{:}\)
\begin{equation*} du = \frac{1}{t}dt \hspace{2cm} v = \frac{1}{4}t^4. \end{equation*}
Thus we have:
\begin{align*} \int t^3 \ln t dt =\amp\ \int \ln t \cdot t^3dt \\ =\amp\ \int \ub{\ln t}_{u} \cdot \ub{t^3 dt}_{dv} \\ =\amp\ \int u\cdot dv \\ =\amp\ u\cdot v - \int v \cdot du \\ =\amp\ \ln t \cdot \frac{1}{4}t^4 - \int \frac{1}{4}t^4 \cdot \frac{1}{t}dt \\ =\amp\ \frac{1}{4}t^4\ln t - \frac{1}{4}\int t^3 dt \\ =\amp\ \frac{1}{4}t^4\ln t - \frac{1}{4}\cdot \frac{1}{4}t^4 + C \\ =\amp\ \frac{1}{4}t^4\ln t - \frac{1}{16}t^4 + C \end{align*}
Now you try some.
Evaluate each of the following integrals. Use proper notation.
  1. \(\ds \int (x - 1)e^x \ dx \qquad\)
    Solution.
    We choose \(u\) and \(dv\) as follows:
    \begin{equation*} u = x-1 \hspace{2cm} dv = e^x dx. \end{equation*}
    Then we find \(du\) by taking the derivative of \(u\) and \(v\) by taking the antiderivative of \(dv\text{:}\)
    \begin{equation*} du = dx \hspace{2cm} v = e^x. \end{equation*}
    Thus we have:
    \begin{align*} \int (x - 1)e^x dx =\amp\ \int \ub{(x - 1)}_{u} \ub{e^x dx}_{dv} \\ =\amp\ \int u\cdot dv \\ =\amp\ u\cdot v - \int v \cdot du \\ =\amp\ (x-1)e^x - \int e^x dx \\ =\amp\ (x-1)e^x - e^x + C \\ =\amp\ xe^x - e^x - e^x + C \\ =\amp\ (x-2)e^x + C \end{align*}
    Answer.
    \begin{equation*} (x-2)e^x + C \end{equation*}
  2. \(\ds \int x^2 \sin x \ dx \qquad\)
    Solution.
    We choose \(u\) and \(dv\) as follows:
    \begin{equation*} u = x^2 \hspace{2cm} dv = \sin x \ dx. \end{equation*}
    Then we find \(du\) by taking the derivative of \(u\) and \(v\) by taking the antiderivative of \(dv\text{:}\)
    \begin{equation*} du = 2xdx \hspace{2cm} v = -\cos x. \end{equation*}
    Thus we have:
    \begin{align*} \int x^2 \sin x dx=\amp\ \int \ub{x^2}_{u} \ub{\sin x dx}_{dv} \\ =\amp\ \int u\cdot dv \\ =\amp\ u\cdot v - \int v \cdot du \\ =\amp\ x^2(-\cos x) - \int -\cos x \cdot 2x dx \\ =\amp\ -x^2\cos x + \int 2x\cos x dx \end{align*}
    The remaining integral, \(\int 2x\cos x dx,\) is simpler than the one we started with, but we will need to do another integration by parts in order to evaluate it. Here we choose
    \begin{equation*} u = 2x \hspace{2cm} dv = \cos x dx. \end{equation*}
    Then we find \(du\) by taking the derivative of \(u\) and \(v\) by taking the antiderivative of \(dv\text{:}\)
    \begin{equation*} du = 2dx \hspace{2cm} v = \sin x. \end{equation*}
    Now we pick up where we left off:
    \begin{align*} \int x^2 \sin x dx=\amp\ -x^2\cos x + \int 2x\cos x dx\\ =\amp\ -x^2\cos x + \int \ub{2x}_{u} \ub{\cos x dx}_{dv} \\ =\amp\ -x^2\cos x + \int u\cdot dv\\ =\amp\ -x^2\cos x + u\cdot v - \int v \cdot du \\ =\amp\ -x^2\cos x + 2x(\sin x) - \int \sin x \cdot 2 dx \\ =\amp\ -x^2\cos x + 2x\sin x - 2\int \sin x dx \\ =\amp\ -x^2\cos x + 2x\sin x - 2(-\cos x) +C \\ =\amp\ -x^2\cos x + 2x\sin x + 2\cos x +C \\ =\amp\ (2-x^2)\cos x + 2x\sin x +C \end{align*}
    Answer.
    \begin{equation*} (2-x^2)\cos x + 2x\sin x +C \end{equation*}
You have attempted of activities on this page.