Skip to main content\(\newcommand\ds{\displaystyle}
\newcommand\ddx{\frac{d}{dx}}
\newcommand\os{\overset}
\newcommand\us{\underset}
\newcommand\ob{\overbrace}
\newcommand\obt{\overbracket}
\newcommand\ub{\underbrace}
\newcommand\ubt{\underbracket}
\newcommand\ul{\underline}
\newcommand\laplacesym{\mathscr{L}}
\newcommand\lap[1]{\laplacesym\left\{#1\right\}}
\newcommand\ilap[1]{\laplacesym^{-1}\left\{#1\right\}}
\newcommand\tikznode[3][]
{\tikz[remember picture,baseline=(#2.base)]
\node[minimum size=0pt,inner sep=0pt,#1](#2){#3};
}
\newcommand{\lt}{<}
\newcommand{\gt}{>}
\newcommand{\amp}{&}
\definecolor{fillinmathshade}{gray}{0.9}
\newcommand{\fillinmath}[1]{\mathchoice{\colorbox{fillinmathshade}{$\displaystyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\textstyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptstyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptscriptstyle\phantom{\,#1\,}$}}}
\newcommand{\sfrac}[2]{{#1}/{#2}}
\)
Section C.2 Visualizing Solutions
Verification Details for Visualization DE.
To verify that \(\ds y = Ce^{x^2} + 3\) is a solution, we move all terms to one side of the equation to get
\begin{equation*}
\ds \frac{dy}{dx} - 2xy + 6x = 0.
\end{equation*}
Now, substitute it into the differential equation:
\begin{align*}
\frac{dy}{dx} - 2xy + 6x =\amp\ 0\\
\frac{d}{dx}\left( Ce^{x^2} + 3 \right) - 2x\left( Ce^{x^2} + 3 \right) + 6x =\amp\ 0\\
2Cxe^{x^2} - 2Cxe^{x^2} - 6x + 6x =\amp\ 0\\
0 =\amp\ 0
\end{align*}
This shows that \(\ds y = Ce^{x^2} + 3\) satisfies and is, thus, a solution to \(\ds \frac{dy}{dx} = 2xy - 6x.\)
You have attempted
of
activities on this page.