Differential equations are equations that contain derivatives, where the unknowns are functions.
They describe how quantities change over time or space.
An Analogy
Like standard equations, differential equations aim to solve for an unknown, but this unknown is a function rather than a number.
Dependent & Independent Variables
Differential equations involve both dependent (unknown function) and independent variables.
The derivatives in the equation apply to the dependent variable.
Terms & Coefficients
Terms in a differential equation are separated by \(+\text{,}\)\(-\text{,}\) or \(=\) signs.
Coefficients are constants or functions that multiply the dependent variable or its derivatives.
Order of a Differential Equation
The order of a differential equation is determined by the highest derivative present.
Linearity of a Differential Equation
A differential equation is linear if it contains only linear combinations of the dependent variable and its derivatives.
Otherwise, it is nonlinear.
ExercisesExercises
Conceptual Review.
1.Fill in the blanks.
Fill in each blank with one of the following terms:
dependent, independent, function, or differential equation.
In this book, DE stands for . Answer.
differential equation
The solution to a differential equation is a . Answer.
function
The solution to a differential equation is represented by the variable of the equation. Answer.
dependent
Solving a differential equation means finding the variable as a function of the variable. Answer.
dependent, independent
2.True or False.
A differential equation is an equation that involves one or more integrals of an unknown function. Answer.
False. A differential equation is an equation that involves one or more derivatives of an unknown function, not integrals.
The dependent variable is a function of the independent varaible. Answer.
True.
The independent variable is a function of the dependent varaible. Answer.
False. The dependent variable is the function, which depends on the independent variable.
An Ordinary Differential Equation (ODE) contains more than one independent variable. Answer.
False. An Ordinary Differential Equation (ODE) contains exactly one independent variable. If it contained more than one, it would be a Partial Differential Equation (PDE).
3.
What is the dependent variable in the following differential equation?
\begin{equation*}
v'(t) = 9.8
\end{equation*}
Answer.
The dependent variable in this equation is \(v\text{.}\)
4.Identify the Variable.
Identify the dependent and independent variables of the following DEs:
For each of the following differential equations, identify the independent and dependent variables, the order, and whether it is linear or nonlinear. If nonlinear, give one term in the expression that breaks the linearity.
25.
\(\, \ds (1 - x)y'' - 4xy' + 5y = \cos x \)
Answer.
independent variable: \(x\) dependent variable: \(y\) 2nd order linear
26.
\(\, \ds x \frac{d^3y}{dx^3} - \left( \frac{dy}{dx} \right)^4 + y = 0 \)
Fill in each blank with one of the following terms:
dependent, independent, function, or differential equation.
In this book, DE stands for . Answer.
differential equation
The solution to a differential equation is a . Answer.
function
The solution to a differential equation is represented by the variable of the equation. Answer.
dependent
Solving a differential equation means finding the variable as a function of the variable. Answer.
dependent, independent
2.True or False.
A differential equation is an equation that involves one or more integrals of an unknown function. Answer.
False. A differential equation is an equation that involves one or more derivatives of an unknown function, not integrals.
The dependent variable is a function of the independent varaible. Answer.
True.
The independent variable is a function of the dependent varaible. Answer.
False. The dependent variable is the function, which depends on the independent variable.
An Ordinary Differential Equation (ODE) contains more than one independent variable. Answer.
False. An Ordinary Differential Equation (ODE) contains exactly one independent variable. If it contained more than one, it would be a Partial Differential Equation (PDE).
3.
What is the dependent variable in the following differential equation?
\begin{equation*}
v'(t) = 9.8
\end{equation*}
Answer.
The dependent variable in this equation is \(v\text{.}\)
4.Identify the Variable.
Identify the dependent and independent variables of the following DEs:
For each of the following differential equations, identify the independent and dependent variables, the order, and whether it is linear or nonlinear. If nonlinear, give one term in the expression that breaks the linearity.
25.
\(\, \ds (1 - x)y'' - 4xy' + 5y = \cos x \)
Answer.
independent variable: \(x\) dependent variable: \(y\) 2nd order linear
26.
\(\, \ds x \frac{d^3y}{dx^3} - \left( \frac{dy}{dx} \right)^4 + y = 0 \)