Skip to main content\(\newcommand\ds{\displaystyle}
\newcommand\ddx{\frac{d}{dx}}
\newcommand\os{\overset}
\newcommand\us{\underset}
\newcommand\ob{\overbrace}
\newcommand\obt{\overbracket}
\newcommand\ub{\underbrace}
\newcommand\ubt{\underbracket}
\newcommand\ul{\underline}
\newcommand\laplacesym{\mathscr{L}}
\newcommand\lap[1]{\laplacesym\left\{#1\right\}}
\newcommand\ilap[1]{\laplacesym^{-1}\left\{#1\right\}}
\newcommand\tikznode[3][]
{\tikz[remember picture,baseline=(#2.base)]
\node[minimum size=0pt,inner sep=0pt,#1](#2){#3};
}
\newcommand{\lt}{<}
\newcommand{\gt}{>}
\newcommand{\amp}{&}
\definecolor{fillinmathshade}{gray}{0.9}
\newcommand{\fillinmath}[1]{\mathchoice{\colorbox{fillinmathshade}{$\displaystyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\textstyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptstyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptscriptstyle\phantom{\,#1\,}$}}}
\newcommand{\sfrac}[2]{{#1}/{#2}}
\)
Section A.4 Trigonometric Identities
Pythagorean Identities.
The following trigonometric identities are useful in solving differential equations:
-
\(\sin^2(\theta) + \cos^2(\theta) = 1 \)
\(1 + \tan^2(\theta) = \sec^2(\theta) \)
\(1 + \cot^2(\theta) = \csc^2(\theta) \)
Even and Odd Properties.
\(\displaystyle \sin(-\theta) = -\sin(\theta) \)
\(\displaystyle \cos(-\theta) = \cos(\theta) \)
\(\displaystyle \tan(-\theta) = -\tan(\theta) \)
\(\displaystyle \csc(-\theta) = -\csc(\theta) \)
\(\displaystyle \sec(-\theta) = \sec(\theta) \)
\(\displaystyle \cot(-\theta) = -\cot(\theta) \)
You have attempted
of
activities on this page.