2.7. Variables¶

One of the most powerful features of a programming language is the ability to manipulate variables. A variable is a name that refers to a value.

Assignment statements create new variables and also give them values to refer to.

message = "What's up, Doc?"
n = 17
pi = 3.14159

This example makes three assignments. The first assigns the string value "What's up, Doc?" to a new variable named message. The second assigns the integer 17 to n, and the third assigns the floating-point number 3.14159 to a variable called pi.

The assignment token, =, should not be confused with equality (we will see later that equality uses the == token). The assignment statement links a name, on the left hand side of the operator, with a value, on the right hand side. This is why you will get an error if you enter:

17 = n

Tip

When reading or writing code, say to yourself “n is assigned 17” or “n gets the value 17” or “n is a reference to the object 17” or “n refers to the object 17”. Don’t say “n equals 17”.

A common way to represent variables on paper is to write the name with an arrow pointing to the variable’s value. This kind of figure, known as a reference diagram, is often called a state snapshot because it shows what state each of the variables is in at a particular instant in time. (Think of it as the variable’s state of mind). This diagram shows the result of executing the assignment statements shown above.

Reference Diagram

If your program includes a variable in any expression, whenever that expression is executed it will produce the value that is linked to the variable at the time of execution. In other words, evaluating a variable looks up its value.

In each case the result is the value of the variable. To see this in even more detail, we can run the program using CodeLens.

Activity: CodeLens 2.7.3 (clens2_7_1)

Now, as you step through the statements, you can see the variables and the values they reference as those references are created.

We use variables in a program to “remember” things, like a patient’s body temperature. But variables are variable. This means they can change over time, just like a patient’s body temperature can fluctuate during an illness. You can assign a value to a variable, and later assign a different value to the same variable.

Note

This is different from math. In algebra, if you give x the value 3, it cannot change to refer to a different value half-way through your calculations!

To see this, read and then run the following program. You’ll notice we change the value of day three times, and on the third assignment we even give it a value that is of a different type.

Activity: CodeLens 2.7.4 (clens2_7_2)

A great deal of programming is about having the computer remember things. For example, we might want to keep track of the number of missed calls on your phone. Each time another call is missed, we will arrange to update or change the variable so that it will always reflect the correct value.

Any place in a Python program where a number or string is expected, you can put a variable name instead. The python interpreter will substitute the value for the variable name.

For example, we can find out the data type of the current value of a variable by putting the variable name inside the parentheses following the function name type.

Note

If you have programmed in another language such as Java or C++, you may be used to the idea that variables have types that are declared when the variable name is first introduced in a program. Python doesn’t do that. Variables don’t have types in Python; values do. That means that it is acceptable in Python to have a variable name refer to an integer and later have the same variable name refer to a string. This is almost never a good idea, because it will confuse human readers (including you), but the Python interpreter will not complain.

Check your understanding

You have attempted of activities on this page