{`person( 1 )` hopes to one day play professional baseball. |}{During the first few months of baseball season|In the first 100 games of the baseball season}, `person( 1 )` hit `X` home runs.

{If `person( 1 )` wants to hit a total of `Q` home runs by the end of the season, how many more runs will `he( 1 )` need to hit in the remaining games|How many more home runs will `he( 1 )` need to hit to get a total of `Q` home runs by the end of the season}?

Home runs already hit + Home runs `he( 1 )` needs to hit = Total home runs wanted

Home runs already hit = `X`

Total home runs wanted = `Q`

Home runs he needs to hit = `x`

`X` + x = `Q`

`x = `

`Q` - `X`

`P` = `Q` - `X`

`person( 1 )` needs to hit

home runs in the remaining games.`P`

`person( 1 )` {earned $`Q` by babysitting his neighbors for `X` hours.|babysat `his( 1 )` neighbors for `X` hours and earned $`Q`.}

What is `person( 1 )`’s hourly wage ?

(Extra Info: Round to the nearest hundredth of a dollar.)

Number of hours `he( 1 )` babysat x Amount of money earned per hour = Total amount of money earned.

Number of hours `he( 1 )` babysat = `X`

Total amount of money earned = `Q`

Amount of money earned per hour = `y`

`X`y = `Q`

`y = \dfrac{`

`Q`}{`X`}

`P` = \dfrac{`Q`}{`X`}

`person( 1 )` earned `$`

per hour while babysitting.`P`

{`person( 1 )` paid $`X` for a t-shirt and received $`Q` in change.|When buying a t-shirt at a clothing store, `person( 1 )` gave the cashier $`X` and received $`Q` in change.}

How much did the t-shirt cost?

Total t-shirt cost + Change received = Amount given to cashier

Change received = `Q`

Amount given to cashier = `X`

Total t-shirt cost = `x`

`x + `

`Q` = `X`

`x = `

`X` - `Q`

`P` = `X` - `Q`

**The t-shirt cost $**

`person( 1 )` works as a cashier at the grocery store in `his( 1 )` town. {Milk is one of the fastest selling items, and right at the start of `his( 1 )` shift someone|A customer came in and} bought `X` gallons of milk for a total of $`Q`.

How much did each gallon of milk cost?

Gallons of milk bought x Cost per gallon of milk = Total cost

Gallons of milk bought = `Q`

Total cost = `X`

Cost per gallon of milk = `y`

`Q`y = `X`

`y = \dfrac{`

`Q`}{`X`}

`P` = \dfrac{`Q`}{`X`}

**Each gallon of milk cost $**

`person( 1 )` {ran the final leg of a|was the final runner of a 3 leg} `Q`-mile relay race. {When `person( 1 )`’s teammate handed `him( 1 )` the baton|Right before starting his leg of the race}, the team had already completed `X` miles of the race.

How far did `person( 1 )` run to complete the race?

Miles `he( 1 )` ran + Miles already completed = Total Miles

Miles already completed = `X`

Total miles = `Q`

Miles `he( 1 )` ran = `x`

`x + `

`X` = `Q`

`x = `

`Q` - `X`

`P` = `Q` - `X`

`person( 1 )` ran

miles to finish the race.`P`