\overline{AB} \perp \overline{CD}
,
lines AB and CD are perpendicular.
\color{green}{\angle{CGE}} = ACCUTEANGLE°
\color{green}{\angle{AGF}} = 90 - ACCUTEANGLE°
\color{green}{\angle{DGF}} = ACCUTEANGLE°
\color{blue}{\angle{AGF}} = {?}
\color{blue}{\angle{CGE}} = {?}
\color{blue}{\angle{BGE}} = {?}
NOTE: Angles not necessarily drawn to scale.
Because we know \overline{AB} \perp \overline{CD}
, we know
\color{purple}{\angle{CGB}} = 90°
label( [2.2, 1.7], "\\color{purple}{90°}",
"above right" );
arc( [0, 0], 3, 0, 90, { stroke: "purple" } );
\color{orange}{\angle{EGB}} = \color{green}{\angle{AGF}}
= 90 - ACCUTEANGLE°
,
because they are opposite angles from each other. Opposite angles
are congruent (equal).
label( [1.2, 0], "\\color{orange}{90 - ACCUTEANGLE°}",
"above right" );
arc( [0, 0], 1.2, 0, 68, { stroke: "orange" } );
Because we know \overline{AB} \perp \overline{CD}
, we know
\color{purple}{\angle{AGD}} = 90°
label( [-2.2, -1.7], "\\color{purple}{90°}",
"below left" );
arc( [0, 0], 3, 180, 270, { stroke: "purple" } );
\color{orange}{\angle{EGB}} = \color{purple}{90°}
- \color{green}{\angle{CGE}} = 90 - ACCUTEANGLE°
label( [1.2, 0], "\\color{orange}{90 - ACCUTEANGLE°}",
"above right" );
arc( [0, 0], 1.2, 0, 68, { stroke: "orange" } );
Because we know \overline{AB} \perp \overline{CD}
, we know
\color{purple}{\angle{CGB}} = 90°
label( [2.2, 1.7], "\\color{purple}{90°}",
"above right" );
arc( [0, 0], 3, 0, 90, { stroke: "purple" } );
\color{orange}{\angle{AGF}} =
\color{purple}{90°} - \color{green}{\angle{DGF}} =
90 - ACCUTEANGLE°
label( [-1.2, 0], "\\color{orange}{90 - ACCUTEANGLE°}",
"below left" );
arc( [0, 0], 1.2, 180, 248, { stroke: "orange" } );
\color{blue}{\angle{AGF}} = \color{orange}{\angle{EGB}} =
90 - ACCUTEANGLE°
,
because they are opposite from each other. Opposite angles are
congruent (equal).
ORIGINAL_LABEL.remove();
label( [-1.2, -0.75],
"\\color{blue}{\\angle{AGF}}=90 - ACCUTEANGLE°",
"below left" );
\color{blue}{\angle{CGE}} =
\color{purple}{90°} - \color{orange}{\angle{EGB}} =
ACCUTEANGLE°
ORIGINAL_LABEL.remove();
label( [0.5, 1.8],
"\\color{blue}{\\angle{CGE}} = ACCUTEANGLE°",
"above" )
\color{blue}{\angle{BGE}} = \color{orange}{\angle{AGF}} =
90 - ACCUTEANGLE°
,
because they are opposite from each other. Opposite angles are
congruent (equal).
ORIGINAL_LABEL.remove();
label( [1.5, 0],
"\\color{blue}{\\angle{BGE}} = 90 - ACCUTEANGLE°",
"above right" );
Given the following:
\color{purple}{\angle{ABC}} = Tri_Z°
\color{green}{\angle{ACB}} = Tri_Y°
What is \color{blue}{\angle{DAB}}
?
\color{purple}{\angle{ABC}} = Tri_Z°
\color{green}{\angle{DAB}} = 180 - Tri_X°
What is \color{blue}{\angle{ACB}}
?
NOTE: Angles not necessarily drawn to scale.
\color{orange}{\angle{BAC}} =
180° - \color{purple}{\angle{ABC}} - \color{green}{\angle{ACB}} =
180 - Tri_Y - Tri_Z°
,
This is because angles inside a triangle add up to 180 degrees.
label( [-3.3, -2], "\\color{orange}{Tri_X°}",
"above right" );
arc( [-4, -2], 0.75, 0, 49, {stroke: "orange"} );
\color{orange}{\angle{BAC}} =
180° - \color{green}{\angle{DAB}} =
180 - Tri_Y - Tri_X°
,
because supplementary angles along a line add up to
180 degrees.
label( [-3.3, -2], "\\color{orange}{Tri_X°}",
"above right" );
arc( [-4, -2], 0.75, 0, 49, {stroke: "orange"} );
\color{blue}{\angle{DAB}} =
180° - \color{orange}{\angle{BAC}} =
Tri_Y + Tri_Z°
,
because supplementary angles along a line add up to 180°
ORIGINAL_LABEL.remove();
label( [-4.7, -2],
"\\color{blue}{\\angle{DAB}} = Tri_Y + Tri_Z°",
"above left" );
\color{blue}{\angle{ACB}} =
180° - \color{orange}{\angle{BAC}} - \color{purple}{\angle{ABC}} =
Tri_Y°
,
because angles inside a triangle add up to 180°.
ORIGINAL_LABEL.remove();
label( [2.80, -2],
"\\color{blue}{\\angle{ACB}} = Tri_Y°",
"above left" );
\overline{HI} \parallel \overline{JK}
,
lines HI and JK are parallel.\color{purple}{\angle{BAC}} = Tri_X°
\color{purple}{\angle{AKJ}} = Tri_Y°
\color{green}{\angle{AJK}} = Tri_Z°
\color{green}{\angle{AHI}} = Tri_Z°
\color{blue}{\angle{AIH}} = {?}
\color{blue}{\angle{AKJ}} = {?}
\color{blue}{\angle{BAC}} = {?}
NOTE: Angles not necessarily drawn to scale.
\color{orange}{\angle{AHI}} = \color{green}{\angle{AJK}}
,
because they are corresponding angles formed by 2 parallel lines and
a transversal line. Corresponding angles are congruent (equal).
label( [-4.60, 0.75], "\\color{orange}{Tri_Z°}",
"below" );
arc( [-5.07, 1.75], 1, 260, 325, {stroke: "orange"} );
\color{orange}{\angle{AJK}} = \color{green}{\angle{AHI}}
,
because they are corresponding angles formed by 2 parallel lines and
a transversal line. Corresponding angles are congruent (equal).
label( [-4.00, 4.25], "\\color{orange}{Tri_Z°}",
"below" );
arc( [-4.47, 5.25], 1, 257, 325, {stroke: "orange"} );
\color{blue}{\angle{AIH}} =
180° - \color{orange}{\angle{AHI}} - \color{purple}{\angle{BAC}} =
180 - Tri_X - Tri_Z°
,
because the 3 angles are contained in \triangle{AHI}
.
Angles inside a triangle add up to 180°.
ORIGINAL_LABEL.remove();
label( [0, -2.50],
"\\color{blue}{\\angle{AIH}} = 180 - Tri_X - Tri_Z°",
"left" );
ORIGINAL_LABEL.remove();
if ( RAND3 === 1 ) {
label( [3.3, -2.6],
"\\color{blue}{\\angle{AKJ}} = Tri_Y°",
"above" );
} else {
label( [-5.5, -3.5],
"\\color{blue}{\\angle{BAC}} = Tri_X°",
"above right" );
}
\color{blue}{\angle{AKJ}} =
180° - \color{orange}{\angle{AJK}} - \color{purple}{\angle{BAC}} =
Tri_Y°
\color{blue}{\angle{BAC}} =
180° - \color{orange}{\angle{AJK}} - \color{purple}{\angle{AKJ}} =
Tri_X°
,
because the 3 angles are contained in \triangle{AJK}
.
Angles inside a triangle add up to 180°.
\overline{DE} \parallel \overline{FG}
,
lines DE and FG are parallel.\overline{KL} \perp \overline{DE}
,
Lines KL and DE are perpendicular.\color{green}{\angle{GCJ}} = Tri_Y°
\color{green}{\angle{IAK}} = Tri_Y°
\color{blue}{\angle{IAK}} = {?}
\color{blue}{\angle{GCJ}} = {?}
NOTE: Angles not necessarily drawn to scale.
\color{orange}{\angle{DAI}} = \color{green}{\angle{GCJ}} =
Tri_Y°
,
because they are alternate exterior angles, formed by 2 parallel lines
and a transversal line, they are congruent (equal).
label( [-.80, 2], "\\color{orange}{Tri_Y°}",
"above left" );
arc( [0, 2], 1, 135, 180, {stroke: "orange"} );
Alternatively, you can pair up using opposite angles and alternate interior
angles to achieve the same result (as seen using
\color{pink}{pink}
).
label( [1, 2], "\\color{pink}{Tri_Y°}",
"below right" );
arc( [0, 2], 1, 315, 360, {stroke: "pink"} );
label( [3, -2], "\\color{pink}{Tri_Y°}",
"above left" );
arc( [4, -2], 1, 135, 180, {stroke: "pink"} );
\color{purple}{\angle{DAK}} = 90°
,
because angles formed by perpendicular lines are equal to 90°.
label( [-1.68, 2], "\\color{purple}{90°}", "above left" );
arc( [0, 2], 1.65, 90, 180, {stroke: "purple"} );
\color{blue}{\angle{IAK}} = 90° - \color{orange}{\angle{DAI}} =
90 - Tri_Y°
,
because angles \color{blue}{\angle{IAK}}
and \color{orange}{\angle{DAI}}
make up angle
\color{purple}{\angle{DAK}}
.
ORIGINAL_LABEL.remove();
label( [0, 3.5],
"\\color{blue}{\\angle{IAK}} = 90 - Tri_Y°",
"above left" );
\color{orange}{\angle{IAK}} = 90° - \color{green}{\angle{IAK}} =
90 - Tri_Y°
,
because angles \color{green}{\angle{IAK}}
and \color{orange}{\angle{DAI}}
, make up angle
\color{purple}{\angle{DAK}}
.
label( [-.80, 2], "\\color{orange}{90-Tri_Y°}",
"above left" );
arc( [0, 2], 1, 135, 180, {stroke: "orange"} );
\color{blue}{\angle{GCJ}} = \color{orange}{\angle{DAI}} =
90 - Tri_Y°
,
because they are alternate exterior angles formed by 2 parallel lines
and a transversal line, they are congruent (equal).
Alternatively, you can pair up using opposite angles and alternate interior
angles to achieve the same result (as seen using
\color{pink}{pink}
).
label( [1, 2], "\\color{pink}{90-Tri_Y°}",
"below right" );
arc( [0, 2], 1, 315, 360, {stroke: "pink"} );
label( [3, -2], "\\color{pink}{90-Tri_Y°}",
"above left" );
arc( [4, -2], 1, 135, 180, {stroke: "pink"} );
ORIGINAL_LABEL.remove();
label( [4.75, -2],
"\\color{blue}{\\angle{GCJ} = 90-Tri_Y°}",
"below right" );