fraction( N1, D1 ) + fraction( N2, D2 ) = {?}
First, we need to find a common denominator. The least common multiple of D1
and D2
is the smallest possible common denominator.
\lcm(D1, D2) = LCM
Now, we need to change both fractions to have a denominator of LCM
.
\begin{align*}fraction( N1, D1 )\cdot fraction( F1, F1 ) &= fraction( N1 * F1, LCM )\\
fraction( N2, D2 )\cdot fraction( F2, F2 ) &= fraction( N2 * F2, LCM )\end{align*}
So, the problem becomes:
fraction( N1 * F1, LCM ) + fraction( N2 * F2, LCM ) = {?}
N2 > 0 ? "Add" : "Subtract" the numerators.
fraction( F1 * N1 + F2 * N2, LCM)
Simplify.
fractionReduce( F1 * N1 + F2 * N2, LCM )