Example D.11.
Find the Laplace transform of the function \(y(t) = 15 - 4e^{9t} + 11t^3.\)
Solution. Solution
We will use properties in the table as follows.
\begin{align*}
Y(s) =\amp\ \lap{ y(t) }\\
=\amp\ \lap{ 15 - 4e^{9t} + 11t^3 }\\
=\amp\ 15\lap{ 1 } - 4\lap{ e^{9t} } + 11\lap{ t^3 } \qquad (\knowl{./knowl/xref/LT-Table-L9.html}{\text{\(L9\)}})\\
=\amp\
{\color{blue}\us{s \gt 0}{{\ub{{\color{black}15\cdot \frac{1}{s}}}}}\
{\color{black}-\ } \us{s \gt 9}{\ub{{\color{black}4\cdot \frac{1}{s - 9}}}}\
{\color{black}+\ } \us{s \gt 0}{\ub{{\color{black}11 \cdot \frac{3!}{s^{3 + 1}}}}}} \qquad
( \knowl{./knowl/xref/LT-Table-L1.html}{\text{\(L1\)}},
\knowl{./knowl/xref/LT-Table-L2.html}{\text{\(L2\)}},
\knowl{./knowl/xref/LT-Table-L3.html}{\text{\(L3\)}})\\
=\amp\ \frac{15}{s} - \frac{4}{s-9} + \frac{66}{s^4}, \hspace{0.5cm} s \gt 9
\end{align*}