"abkmnpvxy" LETTERS.charAt( randRange( 0, LETTERS.length - 1 ) )
randRange( 0, 1 ) randRangeNonZero( -20, 19 ) randRange( 1, 20 ) Y > 0 ? "-" : "+" [expr( ["+", X, Y] ), Z][INDEX] [Z, expr( ["+", X, Y] )][INDEX]

Solve for X.

\large{LEFT = RIGHT}

Z - Y

Y > 0 ? "Subtract" : "Add" abs(Y) Y > 0 ? "from" : "to" both sides.

\large{LEFT\color{blue}{Y_SIGNabs( Y )} = RIGHT\color{blue}{Y_SIGNabs( Y )}}

\large{LEFT\color{blue}{Y_SIGNabs( Y )} = RIGHT\color{blue}{Y_SIGNabs( Y )}}

Simplify.

\large{X = Z - Y}

\large{Z - Y = X}

\large{X = Z - Y}

randRange( 0, 1 ) randRange( 2, 10 ) randRange( 1, 9) * Y [expr( ["*", Y, X] ), Z][INDEX] [Z, expr( ["*", Y, X] )][INDEX]

Solve for X.

\large{LEFT = RIGHT}

Z / Y

Divide both sides by Y.

\large{\dfrac{LEFT}{\color{blue}{Y}} = \dfrac{Z}{\color{blue}{Y}}}

\large{\dfrac{Z}{\color{blue}{Y}} = \dfrac{RIGHT}{\color{blue}{Y}}}

Simplify.

\large{X = Z / Y}

\large{Z / Y = X}

\large{X = Z / Y}

randRange( 0, 1 ) randRange( 2, 10 ) randRange( 2, 10)

Solve for X.

\large{\dfrac{X}{Y} = Z}

Z * Y

Multiply both sides by Y.

\large{\dfrac{X}{Y} \cdot {\color{blue}{Y}} = Z \cdot {\color{blue}{Y}}}

Simplify.

\large{X = Z * Y}

\large{Z = \dfrac{X}{Y}}

Multiply both sides by Y.

\large{Z \cdot {\color{blue}{Y}} = \dfrac{X}{Y} \cdot {\color{blue}{Y}}}

Simplify.

\large{Z * Y = X}

\large{X = Z * Y}