Simplify to lowest terms.
\dfrac{NUM}{DENOM}
NUM / DENOM
There are several ways to tackle this problem.
What is the greatest common factor (GCD) of NUM and DENOM?
NUM = getPrimeFactorization( NUM ).join( "\\cdot" )
DENOM = getPrimeFactorization( DENOM ).join( "\\cdot" )
\mbox{GCD}(NUM, DENOM) = GCD_FACTORS.join( "\\cdot" ) = GCD
\dfrac{NUM}{DENOM}
= \dfrac{NUM / GCD \cdot GCD}{ DENOM / GCD\cdot GCD}
\hphantom{\dfrac{NUM}{DENOM}}
= \dfrac{NUM / GCD}{DENOM / GCD} \cdot \dfrac{GCD}{GCD}
\hphantom{\dfrac{NUM}{DENOM}}
= \dfrac{NUM / GCD}{DENOM / GCD} \cdot 1
\hphantom{\dfrac{NUM}{DENOM}}
= \dfrac{NUM / GCD}{DENOM / GCD}
You can also solve this problem by repeatedly breaking the numerator and denominator into common factors.
For example:
HINT