Simplify the following expression.
A + (B \times C)
A+B*C
= A + (B*C)
= A + B*C
= A+B*C
A + B \times C
A+B*C
= A + B*C
= A+B*C
A \times (B + C)
A*(B+C)
= A \times B+C
= A*(B+C)
A + (\dfrac{B*C}{C})
A+B
= A + (B)
= A + B
= A+B
A + \dfrac{B*C}{C}
A+B
= A + B
= A+B
\dfrac{ (A*(B+C)) }{ B + C }
A
= \dfrac{ (A*(B+C)) }{ ((B+C)) }
= \dfrac{ (A*(B+C)) }{ B+C }
= A
\dfrac{ (A*(B-C)) }{ (B - C) }
A
= \dfrac{ (A*(B-C)) }{ ((B-C)) }
= \dfrac{ (A*(B-C)) }{ B-C }
= A
(A + (B - C \times D)) \times E
(A+(B-(C*D)))*E
= (A + (B - (C*D))) \times E
= (A + ((B-(C*D)))) \times E
= (A + (B-(C*D))) \times E
= ((A+(B-(C*D)))) \times E
= (A+(B-(C*D))) \times E
= (A+(B-(C*D)))*E
A + (B - C \times D) \times E
A+((B-(C*D))*E)
= A + (B - (C*D)) \times E
= A + ((B-(C*D))) \times E
= A + ((B-(C*D))*E)
= A+((B-(C*D))*E)
A - B \times C + \dfrac{ (D*E) }{ E }
A-B*C+D
= A - B \times C + D
= A - (B*C) + D
= (A-B*C) + D
= A-B*C+D
A \times B + C \times \dfrac{ (D*E) }{ E }
(A*B)+(C*D)
= A \times B + C \times D
= (A*B) + C \times D
= (A*B) + (C*D)
= (A*B)+(C*D)
(A + B \times C) - D \times E
(A+B*C)-(D*E)
= (A + (B*C)) - D \times E
= (A+(B*C)) - D \times E
= (A+(B*C)) - (D*E)
= (A+B*C)-(D*E)