\displaystyleWHOLE_1\ fraction( NUM_1, DENOM_1, false, true ) \times WHOLE_2\ fraction( NUM_2, DENOM_2, false, true )
(WHOLE_3 + (NUM_3_SIMP/DENOM_3_SIMP))
Turn the mixed numbers into improper fractions to make it easier to multiply them.
Let's start with the first mixed number: To find the numerator of the improper fraction, multiply the denominator (DENOM_1) by the whole number (WHOLE_1) and add the numerator (NUM_1). DENOM_1*WHOLE_1+NUM_1 = I_NUM_1
.
So the first mixed number can be written as fraction( I_NUM_1, I_DENOM_1, false, true )
.
Now let's turn the second mixed number into an improper fraction: To find the numerator, multiply the denominator (DENOM_2) by the whole number (WHOLE_2) and add the numerator (NUM_2). DENOM_2*WHOLE_2+NUM_2 = I_NUM_2
.
So the second mixed number can be written as fraction( I_NUM_2, I_DENOM_2, false, true )
.
Multiply the two improper fractions: fraction( I_NUM_1, I_DENOM_1, false, true )
* fraction( I_NUM_2, I_DENOM_2, false, true )
\displaystyle {} = fraction( I_NUM, I_DENOM )
mixedFractionFromImproper(I_NUM_SIMP, I_DENOM_SIMP)
Turn the improper fraction into a mixed number:
First, divide the numerator by the denominator.
I_NUM \div I_DENOM = \color{#28AE7B}{WHOLE_3}\ \text{ R } \color{purple}{NUM_3}
So the improper fraction has WHOLE_3
wholes in it.
This quotient WHOLE_3
is the whole number part of the mixed number.
We also have a remainder of NUM_3
, though. That represents the \dfrac{\color{purple}{NUM_3}}{DENOM_3}
remaining from the improper fraction; it wasn't enough to be another whole number.
The converted mixed fraction is \color{#28AE7B}{WHOLE_3}\ \color{purple}{fraction( NUM_3, DENOM_3, false, true )}.