Find \displaystyle\lim_{x \to PM\infty}\dfrac{NUM.text()}{DEN.text()}
.
fractionReduce( NUM.getCoefAndDegreeForTerm(0).coef, DEN.getCoefAndDegreeForTerm(0).coef )
fractionReduce( -NUM.getCoefAndDegreeForTerm(0).coef, DEN.getCoefAndDegreeForTerm(0).coef )
+\infty
-\infty
0
Look at the leading terms expr(NUM.expr()[1])
and expr(DEN.expr()[1])
.
Because they have the same degree DEG
, the limit is equal to the quotient of their coefficients.
\displaystyle\lim_{x \to PM\infty}\dfrac{NUM.text()}{DEN.text()} = fractionSimplification( NUM.coefs[DEG], DEN.coefs[DEG] )
Find \displaystyle\lim_{x \to PM\infty}\dfrac{NUM.text()}{DEN.text()}
.
0
fractionReduce( NUM.getCoefAndDegreeForTerm(0).coef, DEN.getCoefAndDegreeForTerm(0).coef )
fractionReduce( -NUM.getCoefAndDegreeForTerm(0).coef, DEN.getCoefAndDegreeForTerm(0).coef )
+\infty
-\infty
Look at the leading terms expr(NUM.expr()[1])
and expr(DEN.expr()[1])
.
Because the numerator's degree NUM.getCoefAndDegreeForTerm(0).degree
is less than the denominator's degree DEN.getCoefAndDegreeForTerm(0).degree
, the bottom term dominates as x
approaches PM\infty
.
Since the denominator grows faster than the numerator, the limit goes to 0
.
Find \displaystyle\lim_{x \to \infty}\dfrac{NUM.text()}{DEN.text()}
.
RIGHT_SIGN\infty
fractionReduce( NUM.getCoefAndDegreeForTerm(0).coef, DEN.getCoefAndDegreeForTerm(0).coef )
fractionReduce( -NUM.getCoefAndDegreeForTerm(0).coef, DEN.getCoefAndDegreeForTerm(0).coef )
WRONG_SIGN\infty
0
Look at the leading terms expr(NUM.expr()[1])
and expr(DEN.expr()[1])
.
As x \to \infty
, the numerator approaches NUM.getCoefAndDegreeForTerm(0).coef < 0 ? "-" : ""\infty
because the coefficient NUM.getCoefAndDegreeForTerm(0).coef
is NUM.getCoefAndDegreeForTerm(0).coef < 0 ? "negative" : "positive".
As x \to \infty
, the denominator NUM.getCoefAndDegreeForTerm(0).coef * DEN.getCoefAndDegreeForTerm(0).coef > 0 ? "also " : ""approaches DEN.getCoefAndDegreeForTerm(0).coef < 0 ? "-" : ""\infty
because the coefficient DEN.getCoefAndDegreeForTerm(0).coef
is DEN.getCoefAndDegreeForTerm(0).coef < 0 ? "negative" : "positive".
Because the numerator's degree NUM.getCoefAndDegreeForTerm(0).degree
is greater than the denominator's degree DEN.getCoefAndDegreeForTerm(0).degree
, the limit diverges.
The numerator and denominator have the same sign as x
gets large, so the limit is +\infty
.
The numerator and denominator have differing signs as x
gets large, so the limit is -\infty
.
Find \displaystyle\lim_{x \to K}\dfrac{A}{Bx + -K}
.
undefined
fractionReduce( A, K )
fractionReduce( A, -K )
+\infty
-\infty
0
Consider the behavior of the function as x \to K
from each direction.
As x
approaches K
from the left, Bx + -K
starts negative and increases as it approaches 0
, so \dfrac{A}{Bx + -K}
approaches -\infty
.
As x
approaches K
from the right, Bx + -K
starts positive and decreases as it approaches 0
, so \dfrac{A}{Bx + -K}
approaches +\infty
.
Since the left- and right-hand limits are not equal, the limit is not defined.
Find \displaystyle\lim_{x \to K}\dfrac{A}{(Bx + -K\smash{)}^2}
.
RIGHT_SIGN\infty
fractionReduce( A, K * K )
fractionReduce( A, -K * K )
WRONG_SIGN\infty
0
Consider the behavior of the function as x \to K
from each direction.
In either direction, (x + -K)^2
approaches 0
, so \dfrac{A}{(Bx + -K\smash{)}^2}
diverges.
Because (x + -K)^2
is always positive and A
is A > 0 ? "positive" : "negative", \dfrac{A}{(Bx + -K\smash{)}^2}
approaches RIGHT_SIGN\infty
.