This exercise covers inverses of linear functions.

randRangeNonZero( -3, 3 ) randRangeNonZero( -5, 5 ) expr([ "*", M, "x" ]) expr([ "*", B, "x" ]) varFraction( "x", M ) varFraction( "x", -M ) varFraction( M, "x" ) varFraction( B, M ) varFraction( M, B ) varFraction( "y", M ) subFraction( B_OVER_M ) subFraction( M_OVER_B ) addFraction( B_OVER_M ) function( x ) { return M * x + B; } function( x ) { return ( x - B ) / M; }

f(x) = M_X + B for all real numbers.

What is f^{-1}(x), the inverse of f(x)?

graphInit({ range: 10, scale: 20, tickStep: 1, labelStep: 2, axisArrows: "<->" }) // draw the function style({ stroke: "#a3a3ff", strokeWidth: 2 }, function() { plot( F, [ -10, 10 ] ); });

X_OVER_M + MINUS_B_OVER_M

  • expr([ "+", M_X, -B ])
  • expr([ "+", M_X, B ])
  • expr([ "+", B_X, M ])
  • expr([ "+", M_OVER_X, B ])
  • expr([ "+", X_OVER_M, B ])
  • expr([ "+", X_OVER_M, -B ])
  • X_OVER_M + MINUS_M_OVER_B
  • X_OVER_M + PLUS_B_OVER_M
  • X_OVER_NEG_M + MINUS_B_OVER_M
  • X_OVER_NEG_M + PLUS_B_OVER_M

y = f(x), so solving for x in terms of y gives x=f^{-1}(y)

f(x) = y = expr([ "+", M_X, B ])

expr([ "+", "y", -B ]) = M_X

Y_OVER_M + MINUS_B_OVER_M = x

x = Y_OVER_M + MINUS_B_OVER_M

So we know:
f^{-1}(y) = Y_OVER_M + MINUS_B_OVER_M

Rename y to x:
f^{-1}(x) = X_OVER_M + MINUS_B_OVER_M

var pos = function( n ) { if ( n >= 1 ) { return "below right"; } else if ( n > 0 ) { return "below"; } else if ( n > -1 ) { return "above"; } else { return "above right"; } }, fPos = pos( M ), fInvPos = pos( 1 / M ); // plot function inverse style({ stroke: "#ffa500", strokeWidth: 2 }, function() { plot( F_INV, [ -10, 10 ] ); }); if ( M !== -1 && ( M !== 1 || B !== 0 ) ) { // label f style({ color: "#a3a3ff", strokeWidth: 1 }, function() { label( labelPos( F ), "f(x)", fPos ); }); // label f_inv style({ color: "#ffa500", strokeWidth: 1 }, function() { label( labelPos( F_INV ), "f^{-1}(x)", fInvPos ); }); }
style({ stroke: "#aaa", strokeWidth: 2, strokeDasharray: "- " }, function() { plot( function( x ) { return x; }, [ -10, 10 ] ); });

Notice that f^{-1}(x) is just f(x) reflected across the line y=x.