randRange( 0, 2 ) 1 / randRange( 2, 5 ) randRange( 1, 3 ) [ deskItem( 0 ), fruit( 0 ), "X" ][ INDEX ] [ "# of " + plural( UNIT ), "# of " + plural( UNIT ), "X" ][ INDEX ] [ "Price of " + plural( UNIT ), "Price of " + plural( UNIT ), "Y" ][ INDEX ] [ "the number of " + plural( UNIT ), "the number of " + plural( UNIT ), "X" ][ INDEX ] [ "the price of " + plural( UNIT ), "the price of " + plural( UNIT ), "Y" ][ INDEX ]

How does Y_AXIS_QUESTION change as X_AXIS_QUESTION increases?

init({ range: [[-3, 10], [-1, 10]], scale: [30, 30] }); grid( [10, 10], [10, 10], { stroke: "#ccc" }); style({ stroke: "#888", strokeWidth: 2, arrows: "->" }); path( [ [-0.5, 0], [10, 0] ] ); path( [ [0, -0.5], [0, 10] ] ); style({ stroke: "#000000", strokeWidth: 0.9, arrows: "->" }); label( [ 0, 9.2 ], "\\text{" + Y_AXIS_LABEL + "}", "right"); label( [ 8.5, 0], "\\text{" + X_AXIS_LABEL + "}", "below"); style({ stroke: "#6495ED", strokeWidth: 2, arrows: "->" }); plot( function( x ) { return ( M ) * x + B; }, [0, 10]);
Increases
  • Increases
  • Decreases
  • Stays the same
style({ fill: "", stroke: "#000000" }); line( [ 4, 4 * M + B ], [ 7, 4 * M + B ] ); style({ stroke: "#40a020" }); line( [ 7, 4 * M + B ], [ 7, 7 * M + B ] );

Looking at the graph, we see that as x increases (\color{#000000}{\text{black arrow}}), y also increases (\color{#40a020}{\text{green arrow}}).

We can say that the slope of the line is positive, or that the variables have a direct relationship.

Thus, as X_AXIS_QUESTION increases, Y_AXIS_QUESTION also increases.

1 / randRange( 2, 5 ) * -1 randRange( 6, 8 )
Decreases
style({ fill: "", stroke: "#000000" }); line( [ 4, 4 * M + B ], [ 7, 4 * M + B ] ); style({ stroke: "#ff0000" }); line( [ 7, 4 * M + B ], [ 7, 7 * M + B ] );

Looking at the graph, we see that as x increases (\color{#000000}{\text{black arrow}}), y decreases (\color{#ff0000}{\text{red arrow}}).

We can say that the slope of the line is negative, or that the variables have an inverse relationship.

Thus, as X_AXIS_QUESTION increases, Y_AXIS_QUESTION decreases.

0 randRange( 2, 8 )
Stays the same

Looking at the graph, we see that as x increases, there is no change in y.

We can say that the slope of the line is zero, or that the variables have no correlation.

Thus, as X_AXIS_QUESTION increases, Y_AXIS_QUESTION stays the same.