This exercise covers exponential arithmetic with positive rational bases and rational exponents with unit numerator. This exercise covers the first chunk of material from the Level 3 Exponents video.

twoBasesOneRoot() VALS.base_1 VALS.base_2 random() < .75 VALS.root EXP_NEG ? BASE_D : BASE_N EXP_NEG ? BASE_N : BASE_D round( pow( EXP_NEG ? BASE_D : BASE_N, 1 / EXP_D ) ) round( pow( EXP_NEG ? BASE_N : BASE_D, 1 / EXP_D ) )

`\Large fracParens( BASE_N, BASE_D )^{fracSmall( EXP_NEG ? -1 : 1, EXP_D )}`

SOL_N / SOL_D

`= fracParens( BASEF_N, BASEF_D )^{fracSmall( 1, EXP_D )}`

Figure out what goes in the blank:
`\Big(? \Big)^{EXP_D}=frac( BASEF_N, BASEF_D )`

Figure out what goes in the blank:
`\Big(\color{blue}{frac( SOL_N, SOL_D )}\Big)^{EXP_D}=frac( BASEF_N, BASEF_D )`

So `fracParens( BASE_N, BASE_D )^{fracSmall( EXP_NEG ? -1 : 1, EXP_D )}=fracParens( BASEF_N, BASEF_D )^{fracSmall( 1, EXP_D )}=fraction( SOL_N, SOL_D, true, true, false, false )`

So `fracParens( BASEF_N, BASEF_D )^{fracSmall( 1, EXP_D )}=fraction( SOL_N, SOL_D,true, true, false, false )`